(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
:(+(x, y), z) →+ +(:(x, z), :(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / +(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+'(x, y), z) → +'(:(x, z), :(y, z))
:(z, +'(x, f(y))) → :(g(z, y), +'(x, a))
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
f/0
g/0
g/1
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+'(x, y), z) → +'(:(x, z), :(y, z))
:(z, +'(x, f)) → :(g, +'(x, a))
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
:(:(x, y), z) → :(x, :(y, z))
:(+'(x, y), z) → +'(:(x, z), :(y, z))
:(z, +'(x, f)) → :(g, +'(x, a))
Types:
: :: +':f:g:a → +':f:g:a → +':f:g:a
+' :: +':f:g:a → +':f:g:a → +':f:g:a
f :: +':f:g:a
g :: +':f:g:a
a :: +':f:g:a
hole_+':f:g:a1_0 :: +':f:g:a
gen_+':f:g:a2_0 :: Nat → +':f:g:a
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
:
(10) Obligation:
TRS:
Rules:
:(
:(
x,
y),
z) →
:(
x,
:(
y,
z))
:(
+'(
x,
y),
z) →
+'(
:(
x,
z),
:(
y,
z))
:(
z,
+'(
x,
f)) →
:(
g,
+'(
x,
a))
Types:
: :: +':f:g:a → +':f:g:a → +':f:g:a
+' :: +':f:g:a → +':f:g:a → +':f:g:a
f :: +':f:g:a
g :: +':f:g:a
a :: +':f:g:a
hole_+':f:g:a1_0 :: +':f:g:a
gen_+':f:g:a2_0 :: Nat → +':f:g:a
Generator Equations:
gen_+':f:g:a2_0(0) ⇔ f
gen_+':f:g:a2_0(+(x, 1)) ⇔ +'(gen_+':f:g:a2_0(x), f)
The following defined symbols remain to be analysed:
:
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
:(
gen_+':f:g:a2_0(
+(
1,
n4_0)),
gen_+':f:g:a2_0(
b)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
:(gen_+':f:g:a2_0(+(1, 0)), gen_+':f:g:a2_0(b))
Induction Step:
:(gen_+':f:g:a2_0(+(1, +(n4_0, 1))), gen_+':f:g:a2_0(b)) →RΩ(1)
+'(:(gen_+':f:g:a2_0(+(1, n4_0)), gen_+':f:g:a2_0(b)), :(f, gen_+':f:g:a2_0(b))) →IH
+'(*3_0, :(f, gen_+':f:g:a2_0(b)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
:(
:(
x,
y),
z) →
:(
x,
:(
y,
z))
:(
+'(
x,
y),
z) →
+'(
:(
x,
z),
:(
y,
z))
:(
z,
+'(
x,
f)) →
:(
g,
+'(
x,
a))
Types:
: :: +':f:g:a → +':f:g:a → +':f:g:a
+' :: +':f:g:a → +':f:g:a → +':f:g:a
f :: +':f:g:a
g :: +':f:g:a
a :: +':f:g:a
hole_+':f:g:a1_0 :: +':f:g:a
gen_+':f:g:a2_0 :: Nat → +':f:g:a
Lemmas:
:(gen_+':f:g:a2_0(+(1, n4_0)), gen_+':f:g:a2_0(b)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_+':f:g:a2_0(0) ⇔ f
gen_+':f:g:a2_0(+(x, 1)) ⇔ +'(gen_+':f:g:a2_0(x), f)
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
:(gen_+':f:g:a2_0(+(1, n4_0)), gen_+':f:g:a2_0(b)) → *3_0, rt ∈ Ω(n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
:(
:(
x,
y),
z) →
:(
x,
:(
y,
z))
:(
+'(
x,
y),
z) →
+'(
:(
x,
z),
:(
y,
z))
:(
z,
+'(
x,
f)) →
:(
g,
+'(
x,
a))
Types:
: :: +':f:g:a → +':f:g:a → +':f:g:a
+' :: +':f:g:a → +':f:g:a → +':f:g:a
f :: +':f:g:a
g :: +':f:g:a
a :: +':f:g:a
hole_+':f:g:a1_0 :: +':f:g:a
gen_+':f:g:a2_0 :: Nat → +':f:g:a
Lemmas:
:(gen_+':f:g:a2_0(+(1, n4_0)), gen_+':f:g:a2_0(b)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_+':f:g:a2_0(0) ⇔ f
gen_+':f:g:a2_0(+(x, 1)) ⇔ +'(gen_+':f:g:a2_0(x), f)
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
:(gen_+':f:g:a2_0(+(1, n4_0)), gen_+':f:g:a2_0(b)) → *3_0, rt ∈ Ω(n40)
(18) BOUNDS(n^1, INF)